Localization of Multi-State Quantum Walk in One Dimension
نویسندگان
چکیده
Particle trapping in multi-state quantum walk on a circle is studied. The timeaveraged probability distribution of a particle which moves four different lattice sites according to four internal states is calculated exactly. In contrast with “Hadamard walk” with only two internal states, the particle remains at the initial position with high probability. The time-averaged probability of finding the particle decreases exponentially as distance from a center of a spike. This implies that the particle is trapped in a narrow region. This striking difference is minutely explained from difference between degeneracy of eigenvalues of the time-evolution matrices. The dependence of the particle distribution on initial conditions is also considered.
منابع مشابه
Decoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملAbsorption Problems for Quantum Random Walks in One Dimension
This paper treats absorption problems for the one-dimensional quantum random walk determined by a 2× 2 unitary matrix U on a state space {0, 1, . . . ,N} where N is finite or infinite by using a new path integral approach based on an orthonormal basis P,Q,R and S of the vector space of complex 2× 2 matrices. Our method studied here is a natural extension of the approach in the classical random ...
متن کاملTrapping photons on the line: controllable dynamics of a quantum walk
Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum...
متن کاملAbsorption Problems for Quantum Walks in One Dimension
This paper treats absorption problems for the one-dimensional quantum walk determined by a 2 × 2 unitary matrix U on a state space {0, 1, . . . , N} where N is finite or infinite by using a new path integral approach based on an orthonormal basis P,Q,R and S of the vector space of complex 2× 2 matrices. Our method studied here is a natural extension of the approach in the classical random walk.
متن کاملLimit theorems for the discrete-time quantum walk on a graph with joined half lines
We consider a discrete-time quantum walk Wt,κ at time t on a graph with joined half lines Jκ, which is composed of κ half lines with the same origin. Our analysis is based on a reduction of the walk on a half line. The idea plays an important role to analyze the walks on some class of graphs with symmetric initial states. In this paper, we introduce a quantum walk with an enlarged basis and sho...
متن کامل